
A Framework for Retrieval and Annotation in Digital
Humanities using XQuery Full Text and Update in BaseX

Cerstin Mahlow* Christian Grün† Alexander Holupirek† Marc H. Scholl†

*Department of German †Database & Information Systems Group
University of Basel University of Konstanz

4051 Basel, Switzerland 78457 Konstanz, Germany
cerstin.mahlow@unibas.ch [firstname.lastname]@uni-konstanz.de

ABSTRACT
A key difference between traditional humanities research and the
emerging field of digital humanities is that the latter aims to comple-
ment qualitative methods with quantitative data. In linguistics, this
means the use of large corpora of text, which are usually annotated
automatically using natural language processing tools. However,
these tools do not exist for historical texts, so scholars have to work
with unannotated data. We have developed a system for systematic,
iterative exploration and annotation of historical text corpora, which
relies on an XML database (BaseX) and in particular on the Full
Text and Update facilities of XQuery.

Categories and Subject Descriptors
J.5 [Computer Applications]: Arts and Humanities – Linguis-
tics; H.2.4 [Database Management]: Systems – Textual databases;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Search process

Keywords
XML, TEI, database, XQuery Full Text, corpus linguistics, phrase-
ology

1. INTRODUCTION
Traditional humanities are mainly concerned with the qualita-

tive exploration of text to answer specific research questions. This
includes investigating modern and historical texts: hand-written,
printed, spoken, or in electronic form, probably mixed with images,
etc. Digital humanities extend these traditional research methods
and resources by applying quantitative methods to large amounts of
electronically available texts. To answer linguistic questions, these
methods rely on linguistically annotated texts. Usually, linguis-
tic annotation is done automatically by applying natural language
processing (NLP) tools to raw text.

However, research on historical texts in this paradigm is ham-
pered by the fact that NLP tools are suitable for modern texts only.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’12, September 4–7, 2012, Paris, France.
Copyright 2012 ACM 978-1-4503-1116-8/12/09 ...$15.00.

Historical texts reflect different spelling conventions than today,
inflection might have been different, and rules for word order or for
syntax might have changed over time. Additionally, some centuries
ago there was no fixed set of spelling rules writers were supposed to
follow—we often find different spellings for a word within one text.
For these reasons, using NLP for modern language on historical
texts typically yields unsatisfying results [see for example 11, 30].
Therefore, when laborious manual annotation is no option, scholars
prefer to apply methods from information retrieval to find relevant
information in texts.

There are currently only limited resources to support scholars
from the digital humanities in searching and enriching their data.
Typically, project-specific or document-specific models, methods,
and tools are developed, which is not an optimal situation, as Ro-
mary [28] argues. The result of a query in corpus linguistics tools
might be exported to be later evaluated manually or statistically.
However, to ensure reproducibility of linguistic research and to al-
low for comparing variants of queries considering slightly differing
perspectives, it would be necessary to annotate the original data to
make found information explicit and to enrich the data with infor-
mation derived from interpretation of the query and the results. The
result of a query should result in an annotation layer that might be
extended by manually added information. These annotation layers
might then serve as a resource for higher-level investigations.

In this paper, we propose a framework supporting at the same
time retrieval and annotation of linguistic structures in diachronic
corpora from the digital humanities. We present the architecture
of BaseX, as an instantiation of an XML database as proposed
by Salminen and Tompa [29], the W3C XQuery 3.0 language, its
official Full Text and Update Facility extensions, and some specifics
of the implementation in BaseX. As a case in point, we give details
on exploring TEI document collections of German texts from 1650
until today; we discuss the tools and resources implemented so far
and demonstrate how linguists investigating diachronic phenomena
benefit from the application of state-of-the-art XML technologies.

2. A FRAMEWORK FOR RETRIEVAL AND
ANNOTATION OF DIACHRONIC COR-
PORA

At various places, large amounts of hand-written or printed texts
are currently being digitized and semi-automatically converted into
XML data conforming to TEI P5 [34]. These TEI-annotated corpora
are important sources in the growing field of digital humanities. A
typical use of such data is the exploration of the XML structure to
apply different display procedures depending on user preferences.
Human users, e.g., scholars, can then inspect the data, which is

195

tailored to their needs, or obtain a rendering that reflects the original
rendering of the printed edition.

Research questions from the digital humanities may include in-
vestigations concerning the linguistic development of a certain
language, exploring the ethical or legal development of societies,
analyzing texts to learn about animals and plants existing at for-
mer times, getting evidence for historical events, etc. To answer
these questions, researchers explore textual documents by applying
queries which make use of the content and the existing annotation.

These queries typically search for concepts rather than specific
words or phrases. Searching for a concept requires formulating
various queries, taking into account possible variation of words to
express a concept, involving variants of multi-word units like co-
occurrences, collocations, or idioms. The hits are then interpreted
by the researcher. In general, the automatic distinction between
true and false positives is almost impossible. In most cases, corpus
work involves both inspecting the text, considering already available
annotation, and annotating specific aspects to be inspected in detail
in a follow-up step. A corpus tool for the digital humanities thus
has to support retrieval as well as annotation.

Researchers from digital humanities are linguists, historians, or
jurists with limited experience in XML structures and techniques.
Therefore, allowing users to query a corpus by writing XQuery
expressions is no option. This also affects performance requirements.
The display of results to be inspected—to decide whether to refine
the query or to select certain hits for further exploration—cannot be
limited to matched nodes or attributes. It involves the full rendering
of hits including their context, e.g., highlighting the matched text
and showing bibliographic data or preceding and following nodes.
However, these additional requirements should have no considerable
effect on the response times.

The corpora to be searched usually consist of various documents
from different authors, written and published at different points
in time, i.e., diachronic corpora consisting of heterogeneous texts.
The TEI annotation of textual sources generally echoes the docu-
ment structure only, there is no annotation with respect to language
features. If there is linguistic annotation available—either done
automatically for modern texts or manually for small document col-
lections of historical texts—linguistic information usually is stored
as separate layers to the basic data. These data can then be searched
using dedicated tools; typically, special-purpose databases are used
for retrieval, e.g., Corpus Workbench1, making use of linguistic
annotation like lemmatization, part-of-speech (POS) annotation, or
syntactic annotation.

However, linguistically annotated corpora of a reasonable size
exist for modern languages only. The use of corpus linguistic tools
to explore large diachronic corpora is thus not possible and we can
only make use of the TEI annotation.

2.1 State of the art and related work
Although corpus annotation is realized almost exlusively as XML

annotation, there are only few NLP projects using standard XML
tools or XQuery for exploration of linguistic data, see for exam-
ple [12, 27, 31]. However, existing approaches have several draw-
backs, due to the nature of the research objects as well as due to
technical solutions chosen.

Researchers from digital humanities mainly care about the content
of their textual resources. Creating a collection of relevant docu-
ments concerning a research question often results in a collection
of heterogeneous documents: The documents are of different size
ranging from a few kilobytes to hundreds of megabytes, eventually

1http://cwb.sourceforge.net/

resulting in large collections of dozens of gigabytes; the documents
might be born digital or scanned and OCR-processed; the quality
of the TEI annotation depends on the annotation process used; the
character encoding might be inconsistent. Therefore most projects
introduce a semi-automatic preprocessing step to either harmonize
documents [see for example 27] or to even get rid of annotation,
because actual processing is done on raw texts [see 25]. For example
brat, a Web-based tool for NLP-assisted annotation [32], expects
input data as plain text.

Baumann et al. [2] present a system suited to handle multi-layered
data, intended to overcome performance issues of other systems.
However, they do not report on the creation of the annotation. Simi-
larly, Eckart and Teich [14] focus on querying and representation
only.

Rehm et al. [27] report response times of up to 3 hours for typical
queries. With their system they are not able to achieve performance
desired for interactive use. When systematically annotating corpora,
it might be possible to split the corpus into smaller portions to be
able to inspect and annotate them with a reasonable performance.
However, when searching for evidence of concepts that might occur
only rarely, splitting the corpus is no option—the researcher will
lose the overview.

Annotation tools support manual annotation of small portions of
the corpus to be merged later. Adding information to existing XML
data is usually done by systematically inspecting all information that
has already been stored, introducing new tags for marking relevant
parts, or adding attributes to existing elements.

Automatic annotation of linguistic information is done by apply-
ing NLP tools. These tools have been developed for and tuned to
perform best on modern newspaper texts. Texts from the 17th, 18th
or 19th century differ from modern texts—i.e., late 20th or early 21st
century—with respect to spelling, vocabulary, inflection, word order,
syntax, or any combination of the above. Applying modern tools
to old texts is thus not easily possible, as Dipper [11] or Scheible
et al. [30] have demonstrated. Annotating diachronic corpora, would
therefore require manual annotation, which is usually not possible.
Part of an alternative solution to overcome, for example, lack of
lemmatization, would be to use query expansion, i.e., generating all
inflected modern and historical forms in all possible spellings for a
given lemma in a query. This would, however, require generation
tools that take changes in inflection paradigms and spelling variation
into account; tools that currently do not exist.

2.2 An integrated system for retrieval and an-
notation of large XML-annotated corpora

As most of today’s corpus data comes in XML-annotated format,
a framework for digital humanities should make use of this anno-
tation rather than stripping it in a preprocessing step. Additional
information should be added either directly into the corpus or as
stand-off markup.

XML databases suited for diachronic corpora have to meet several
demands, e.g., using standards, avoiding data-model transformation,
supporting stand-off annotation, providing language-sensitive full-
text search, performance issues [see 13]. When choosing an XML
database, we also have to consider that looking for concepts or
variants of multi-word units in texts is a different task than typical
data-oriented XML search. The corpus is not a collection of highly
structured records, but unstructured text with some metadata. We
thus need a solution that allows fast and efficient search in the
content of XML nodes supported by full text indexes while also
considering information stored in attributes.

Exploring a corpus in the field of digital humanities is a recursive
process of applying queries to a large heterogeneous corpus, inspect-

196

http://cwb.sourceforge.net/

ing results, annotating new information for some of the hits, and
applying new queries making immediatly use of added annotation.
A framework integrating high-performance search and annotation is
needed. Accordingly, a separate retrieval engine such as Lucene is
not the best option, while XQuery Full Text and XQuery Update [1]
offer the desired facilities, as they additionally allow us to stick with
the original XML format.

The integration of XQuery in a dedicated XML database like
BaseX facilitates the implementation of applications that support
non-technical users like linguists to query and annotate large collec-
tions of TEI documents in a comfortable environment and in real
time. Using BaseX and the XQuery Full Text and Update imple-
mentation, we are able to overcome most of the deficiencies of other
approaches. We can easily create corpora of heterogeneous docu-
ments; there is no need for semi-automatic preprocessing. Results
of queries can be annotated immediately, this annotation can then be
used in further queries without any need for additional processing
steps. Retrieval and annotation can be nested, allowing scholars to
refine queries and supporting interpretation of information.

3. ARCHITECTURE OF BASEX
BaseX2 is a native XML database management system. In 2005,

it was developed by the Database and Information Systems Group
(DBIS) at the University of Konstanz as a research project on effi-
cient storage layers for tree-structured data [19]. It soon turned out
that the resulting storage system is suited especially well to provide
visual access to large XML corpora [20]. A visual search applica-
tion, which provided access to the complete catalog of the Library
of the University of Konstanz, encoded as XML, has successfully
spawned further research efforts during which the prototype evolved
into stable software [18].

Since 2007, BaseX has been a publicly available, BSD-licensed
open source project.3 Today, the database system is actively used
and developed by a growing community and a core team, which
supervises the implementation efforts and introduces new features
in the system. The core of BaseX is entirely written in the Java
programming language. If the database is run as server, however, one
of 15 client libraries for different programming languages (including
C, Haskell, Perl, PHP, Ruby, and Scala) can be used to connect to
the database and to process commands and queries with BaseX.

3.1 Working with BaseX
There are two main modes to operate BaseX: the standalone mode

(with console or graphical user interface) and the client/server mode.

3.1.1 Standalone mode
The standalone mode is targeted at developers and XML architects

who want to locally explore and work with XML data. BaseX is
started as a conventional application (no configuration is needed).
The standalone variant is feature complete and can be downloaded
for Windows, Mac OS, and various Linux distributions from the
project’s website.

By default, the graphical user interface (GUI) is started, which is
depicted in Figure 1. Visual access to XML data is provided by sepa-
rate views. The figure shows the Map View in the bottom half. It is a
space-filling representation of the opened database (factbook.xml
in this case). The upper left pane shows the Query Editor, in which
users can enter and evaluate XPath/XQuery expressions on the data

2http://basex.org
3Source code can be retrieved for further development, adaptation,
and improvements at https://github.com/BaseXdb and http:
//basex.org/open-source/

to get immediate feedback with each key click. The upper right
pane gives information about compilation, optimization, evaluation
steps, and timings of the executed query. Additional hierarchical
visualizations are available to explore the stored XML data. All
views are tightly coupled and provide instant result feedback.

In contrast to other XML tools and editors, BaseX GUI can both
store and visualize very large XML documents (files up to 421 GiB
have been successfully tested4). Databases in BaseX are very light-
weight: When XML files are opened, they are converted to database
instances on the fly. This allows for a fast exploration and analysis
of large XML documents and collections, since all visualizations
directly interact with the underlying storage layer [17, Chapter 2].

Figure 1: Standalone mode of BaseX.

3.1.2 Server mode
The server mode is the preferred solution if BaseX is expected

to provide its services in a multi-user environment. BaseX Server
offers a central storage for XML documents and binary files that can
subsequently be accessed by remote clients in several programming
languages.

XPath and XQuery are the default languages to access data stored
in server database instances. This allows system architects to lever-
age low-level system internals in a high-level programming lan-
guage. However, XQuery is far more than just a data query language
(DQL), as described in more detail in Section 4.

In addition, BaseX offers two REST interfaces and an implemen-
tation of the WebDAV protocol for accessing and updating data. In
a RESTful environment, for example, AJAX developers can send
data of any format (e.g. XML, JSON, or binary data) to the server
and take advantage of the XQuery language to process and retrieve
relevant data.

Whatever mode is used, BaseX provides general features relevant
for applications in the domain of digital humanities: (1) support
for established W3C standards to operate on XML data: XQuery,
XQuery Full Text, and XQuery Update, (2) a high compliance level
regarding official test suites5, (3) supporting infrastructure for large
textual corpora: Text, Attribute, Full-text and Path indexes, and
(4) facilities for tuning, optimizing, and accessing indexes.

4http://docs.basex.org/wiki/Statistics
5
http://dev.w3.org/2006/xquery-test-suite/

PublicPagesStagingArea/XQTSReportSimple_XQTS_1_0_2.html

197

http://basex.org
https://github.com/BaseXdb
http://basex.org/open-source/
http://basex.org/open-source/
http://docs.basex.org/wiki/Statistics
http://dev.w3.org/2006/xquery-test-suite/PublicPagesStagingArea/XQTSReportSimple_XQTS_1_0_2.html
http://dev.w3.org/2006/xquery-test-suite/PublicPagesStagingArea/XQTSReportSimple_XQTS_1_0_2.html

3.2 Building applications
At least three different ways exist to build higher-level applica-

tions with BaseX: (1) Since the database engine does not depend
on other libraries and has a small memory footprint, BaseX can be
a good choice for embedded systems. It can be used as an XML
storage library and/or XQuery processor inside a Java application.
(2) BaseX can be used as a classic client/server architecture, as
described in Section 3.1. (3) The system can be deployed as a web
application as central part of a pure X-technology stack.

XML, XQuery and XHTML are an ideal match to present and
process information resources in a platform-neutral way. Whenever
the underlying datasets are originally stored in XML, or can be
easily represented as such, XQuery is the domain-specific process-
ing language to filter, select, search, join, sort, group, aggregate,
transform, and restructure, in short, analyze and process, stored
data.

BaseX provides a service infrastructure to implement and deploy
XQuery-based web applications. That way, XML technology can
be applied on all layers of a classical three-tier-architecture [23].
The persistence layer is provided by a native XML database, busi-
ness logic is implemented in XQuery, and the presentation layer is
primarily driven by XHTML.

As such, a single data model is used throughout the architecture
and no conversions have to be applied between the layers. If the
“unified technology stack” is used, as shown in Figure 2, the full
potential of the W3C language family can be leveraged, and benefits
can be expected in terms of (1) a lean system architectures, with less
components involved, and (2) a reduced amount of code, as no glue
code is needed.

The architecture allows for the development of applications solely
relying on the W3C technology family: Applications are provided
with a uniform search and retrieval service, and can now be imple-
mented on a more high-level and generic abstraction layer, while
still being backed by a full-fledged database support.

PHP
Ruby

…

SQL
NoSQL

XML Database

HTML

XQuery

Persistence

Business Logic

Presentation XHTML

XML

Figure 2: Uniform Application Stack: XML technology on all
three tiers of a system architecture

4. XQUERY AND ITS FULL TEXT AND UP-
DATE EXTENSIONS

While XQuery is often labeled as query language for XML data,
and put on a same level with SQL, it is actually a full, Turing-
complete, functional programming language, which makes it per-
fectly suited for representing and processing full information work-
flows with XML data. It is continuously developed and enhanced

// library/title[content contains text
("apple" ftor "pear") ftand ("stem" ftor "tree")
using diacritics insensitive
using thesaurus default
using case insensitive
using language "en"
using stemming
ordered distance at most 5 words]

Listing 1: Example XQuery expression

with new extensions: currently, XQuery 3.0 is being standardized,
and full-text, update and scripting extensions provide additional
features for information retrieval, modifications, and batch jobs.

The XQuery core language makes use of XPath to navigate
through XML nodes (elements, attributes, texts, etc.) in a single
document or a collection of documents. So-called FLWOR expres-
sions can be used to loop through, filter and order XQuery items.
New XML nodes can be constructed on the fly, which can then be
handled like existing XML nodes. The language provides support
for user-defined functions and modules in different namespaces.
Due to its functional nature, XQuery has only expressions and no
statements: expressions within a function body are evaluated and
returned as values. The data model of XQuery treats all values as
sequences. Sequences are lists of items, and items can be nodes
or atomic values. Atomic values may be for example strings, dou-
bles, integers, booleans, or dates [4]. Nested sequences will be
automatically flattened.

With XQuery 3.0, many important features have been added,
which make the language more suitable for universal processing of
XML encoded information: function items (also known as lambdas)
can be used to write more modular code and use XQuery as a fully
functional language. In line with the typed lambda calculus, higher-
order functions can now be passed as arguments to or returned as
results from functions. Next, the new language version introduces
a try/catch expression to handle errors at runtime; serialization
parameters can be specified within the query, the FLWOR expression
has been extended with a group by clause, all its clauses can now
be placed in an arbitrary order, and annotations can be used to change
the visibility of functions or assign them special, implementation-
specific properties.

In SQL, many vendor-specific extensions exist to process full-text
requests. An alternative, unified approach has been taken in the
XML domain: The XPath/XQuery Full Text Recommendation of
the W3C [1] is fully composable and tightly coupled with the core
language. Since its finalization, it is continuously attracting more
and more users and developers from the information retrieval com-
munity. The recommendation offers a wide range of content-based
query operations, classical retrieval tools such as stemming and
thesaurus support, and an implementation-defined scoring model
that allows core developers to adapt their database to a large variety
of use-cases and scenarios. BaseX was the first implementation to
fully support all features of the new specification; Qizx [16] and
MXQuery [15] are two other implementations that are available at
the time of writing.

The syntax of a simple full-text expression is similar to a “general
comparison” in XQuery [5]. A contains text expression can get
pretty verbose: the right hand side can be extended by numerous
logical connectives, match options, and positional filters as shown
in Listing 1.

BaseX provides an additional, implementation-specific match
option fuzzy, which is based on an optimized variant of the Leven-
shtein algorithm [33]. Depending on the length of a string, a certain

198

declare namespace output =
’http ://www.w3.org /2010/ xslt -xquery -serialization ’;
declare option output:method ’xhtml ’;
declare option output:omit -xml -declaration ’no ’;
declare option output:doctype -public

’-//W3C//DTD HTML 4.01 Transitional //EN ’;
declare option output:doctype -system

’http ://www.w3.org/TR/html4/loose.dtd ’;
declare variable $words external := ’-’;
<html >

<head >
<title >Search: { $words }</title >

</head >
<body >{

for $m in doc(’library ’)// medium
where $m/content contains text { $words }
return (

<h1 >{ $m/title/data() }</h1>,
<div >{ $m/content }</div >

)
}</body >

</html >

Listing 2: XQuery expression yielding an XHTML document

number of deviations from the search string will be ignored. A
deviation may either be a missing, additional, wrong, or transposed
character. The following query contains a single transposition and
yields true:

’apple’ contains text ’appel’ using fuzzy

A further noteworthy enhancement, which is helpful for the dis-
cussed use case, and likely to be included in a future version of
the Recommendation [6], is the possibility of highlighting found
tokens in the query results with the ft:mark() function. With
ft:extract(), longer texts can be shortened and limited to the
regions that contain the relevant keywords. More details on the low-
level implementation of XQuery Full Text in BaseX are described
by Grün et al. [21].

Another essential requirement for query languages is the possibil-
ity of performing updates. The official XQuery Update Facility [8]
fills this gap by introducing four new expressions to insert new data
and modify or delete existing data (insert, replace, rename, and
delete), thus offering a data manipulation language (DML). An ad-
ditional transform expression allows developers to modify nodes
in main memory. A special characteristic of XQuery Update is that
all atomic update operations are first moved to a pending update
list, which is processed in batch mode after the query itself has been
evaluated. Next, similar to SQL, updating XQuery expressions may
not return any results. Due to these two constraints, and numerous
validity checks, any side effects are avoided: all updates are guaran-
teed to be atomic, and no data can be returned that has previously
been deleted.

From the implementor’s view, the batch processing allows for
additional optimizations, as none of the reading data references
need to be preserved at the final stage of database modification. An
obvious drawback of this design approach is that subsequent read
and write operations need to be encapsulated in multiple queries.

With XQuery 3.0 and its extensions, there is no need any more
to mix different technologies and data models, e.g., MySQL, PHP,
and HTML: complete web pages can be created without switching
the language and platform. As a result, application development is
getting simplified, and performance is improved as no abstraction
layers need to be passed, as indicated in Section 3.2. Listing 2 is an
example for an XQuery 3.0 expression that yields a valid XHTML
document.

Especially XQuery’s Full Text extension makes XML database
systems like BaseX an interesting choice for building information
retrieval systems in Digital Humanities, as we elaborate in Section 5.
To offer high-performance throughput of XQuery Full Text queries,
BaseX implements Text, Attribute, Full-Text and Path-Summary
indexes to speed up the evaluation process. The index structures
are designed to support more than 20 languages and incorporate
features, as wildcards, stemming, case sensitivity, diacritics, TF/IDF
scoring, and stop words. A point worth mentioning is the ability to
programmatically access database internals, such as values stored in
indexes from within XQuery.

5. USE CASE: RETRIEVING AND ANNO-
TATING IDIOMATIC PHRASES

In the SNSF-funded project “German Proverbs and idioms in
language change. Online dictionary for diachronic phraseology
(OLdPhras)”6, we are interested in finding historical evidence for
phrasemes—in linguistics sometimes also referred to as phraseo-
logical units, idioms, or set phrases—in German texts from 1650
until today. A list derived from phraseme collections and general-
purpose dictionaries from the 18th to the 21st century comprises the
inventory of the intended dictionary.

More abstractly, phrasemes could be considered non-Fregian
discontinuous multi-word expressions within sentence boundaries,
where the meaning of the whole unit cannot be deduced from the
meaning of the parts, see examples 1a and 2a below. Diachronic
change of phrasemes might occur on various levels: lexical units,
syntactic structure of the phraseme, meaning, syntactic role of the
phraseme, etc., making searching for instances of phrasemes a com-
plex task. Retrieving and annotating phrasemes is one step in the
creation of the online dictionary.

Resources are a collection of diachronic TEI-annotated texts
and a collection of printed dictionaries representing the knowledge
about German phrasemes at different points in time from the 18th
to the 21st century. The first step is the compilation of relevant
data. Only some of the dictionaries are available in electronic form,
i.e., have been digitized. Relevant information from dictionaries
will be extracted semi-automatically or manually and stored using
BaseX in XML format for further use. Relevant information from
texts, i.e., evidence of phrasemes, will be collected and annotated
within the database. Storing this information basically means storing
annotation layers, not extracts from the texts.

In a further step, BaseX is used for the creation of single dictio-
nary entries: all information concerning a particular phraseme—i.e.,
extracted parts of other dictionaries and annotated evidence— is
merged. The phraseologist will arrange these elements and write
comments concerning diachronic change. The resulting XML docu-
ments will then form the actual OLdPhras dictionary. Additionally,
the annotation layers covering evidence of phrasemes can be merged
with the TEI-annotated original texts, resulting in a corpus anno-
tated with information on phrasemes. Figure 3 presents the overall
architecture of the OLdPhras system. For more information about
the project in general see [22, 24].

Phrasemes are relatively rare in corpora of written language;
large corpora are thus required to obtain a significant amount of
evidence [9, 10]. As diachronic corpora we use the Deutsches
Textarchiv (DTA)7, the TextGrid Digitale Bibliothek (DB125)8, and
GerManC [3], comprising digitized historical German texts up to the

6http://oldphras.net
7http://deutschestextarchiv.de
8http://www.textgrid.de/digitale-bibliothek.html

199

http://oldphras.net
http://deutschestextarchiv.de
http://www.textgrid.de/digitale-bibliothek.html

Resources Extracts Results

BaseX C&A
(Collect & Annotate)

dictionary
data

annotated
TEI node-IDs

dictionaries

phraseme list

diachronic
TEI data

extract
relevant data

collect &
annotate
evidence

BaseX S&M
(Select & Merge)

Online Dictionary of
German

Phrasemes

Diachronic corpus
with marked and

annotated
phrasemes

<p1>
 …
 <dict1>…
 <dict2>…
 <ev1>…</ev1>
 <ev2>…</ev2>
 <comment>…
 …
</p1>

Figure 3: Overall architecture of the system.

early 20th century. All corpora include TEI-annotated documents,
but the annotation and the organization of the documents differ.

In the rest of this section, we first outline general challenges for
retrieving and annotating phrasemes and then present the principles
of our solution based on XQuery 3.0 and its Full Text and Update
extensions, and the implementation using BaseX.

5.1 Challenges

5.1.1 Linguistic challenges
Typically, multi-word units like co-occurrences, collocations, or

phrasemes are searched for using dedicated tools from corpus lin-
guistics, e.g., Corpus Workbench, making use of pre-existing lin-
guistic annotation. Queries can then be constructed using the base
forms of words, specifying syntactic relations, and allowing for in-
stantiations of a particular POS. For example, query 1b would search
for phrases consisting of a preposition, followed by a determiner,
followed by any inflected form of Strom ‘current’, followed by any
inflected form of the verbs schwimmen ‘to swim’ or treiben ‘to drift’.
Between the noun and the verb there might be other words, e.g.,
adverbs. With this query, we could look for evidence of variants of
phraseme 1a.

(1) a. gegen den Strom schwimmen
‘to swim against the current’
(today’s meaning ‘to act different than the majority’)

b. PREP DET Strom * schwimmen|treiben

In general, looking for phrasemes in texts with a focus on di-
achronic change concerning meaning, vocabulary, and structure, is
a complex task. The starting point is a modern base form as listed
in dedicated phraseme collections or general purpose dictionaries,
like examples 1a and 2a: the verb is in infinitive form at the very
last position as in 1a, valency fillers of the verb might be instanti-
ated as in 2a or not mentioned at all as in 1a (a subject is needed,
someone able to swim). From this base form, a linguist needs to con-
struct a query that allows for variation on all elements, i.e., meaning,
vocabulary, and structure, either one at a time or in combination.

For example, for phraseme 2a, on the lexical level we could
expect variation with respect to the actual fruit—e.g., pears or plums

instead of apples— or with respect to the part of the tree—e.g., the
tree as such, a branch, or a different plant. The best query would
thus be query 2b, in which the first element—the valency filler of
to fall from—is a fruit, and the second a plant or a part of a plant.
Both valency fillers may be single nouns, complex noun phrases, or
pronouns denoting real-world objects. And of course variation in
word order is possible, too.

However, our corpus does not provide linguistic annotation. Even
when using linguistically deeply annotated corpora and semantic
resources like GermaNet9, such queries would be hard to construct
and it is almost impossible to find, for example, evidence 2c in a
text from 1669 [26].

(2) a. der Apfel fällt nicht weit vom Stamm
‘like father like son’
(literally ‘the apple does not fall far from the stem’)

b. something1 fall from something2

c. die birn nit wey vom baum falt
(literally ‘the pear not far from tree falls’)

The best way to look for a variant of an idiomatic phrase is thus to
look for some core elements, like fall from, and then to inspect the
results manually to distinguish true from false positive hits. For this
purpose, string-based queries are sufficient. Variation of a search
string would include spelling variation and inflection. Therefore,
XQuery Full Text with fuzzy search (for spelling variation) and
stemming (for handling basic inflectional variation) is currently the
most appropriate and flexible solution we are aware of.

5.1.2 Technical challenges
In principle, all XML documents represent scanned, OCR-pro-

cessed, manually corrected, and semi-automatically TEI-annotated
texts. However, documents are of different size, ranging from 30 KB
to 90 MB. The collection of all XML documents is 2.9 GiB in size.
The documents are organized differently; they may contain a single
text or only part it written by a single author, a compilation of
dozens of poems by a single author, or all books (which in turn can

9http://www.sfs.uni-tuebingen.de/lsd/index.shtml

200

http://www.sfs.uni-tuebingen.de/lsd/index.shtml

Figure 4: Excerpt from XML representation of “Des Knaben Wunderhorn. Alte deutsche Lieder” by Achim von Arnim and Clemens
Brentano

be compilations of poems or tales, single novels, etc.), of a single
author. The texts themselves are also not alike, as the documents
represent different literary genres, which differ from each other
in style and syntax. In addition, they have often been printed by
different publishers at different points in times, resulting in different
layouts or document structures.

Moreover, the digitization guidelines differ as well: DTA and
GerManC aim to digitize first editions, resulting in texts in the “orig-
inal” language from the time of the writing or the first printing of
a text. DB125 often used later editions, resulting in rather mod-
ern language even for texts originally written in the 17th century.
The TEI annotation of DTA closely mirrors the original format and
therefore includes page breaks and line breaks. The latter preserves
hyphenation, which makes searching for words difficult. Applying
appropriate rendering scripts to this data would easily allow display-
ing the text as lookalike to the printed source. The TEI annotation
of DB125, on the other hand, does not preserve line breaks (except
for poems) and thus no hyphenation occurs.

Figure 4 contains the same excerpt from “Des Knaben Wunder-
horn. Alte deutsche Lieder” by Achim von Arnim and Clemens
Brentano as found in DTA (top buffer) and in DB125 (lower buffer).
It illustrates the characteristics of the two XML formats described
above. Some texts have been included in both corpora: in this case,
DB125 used an edition from 1979, whereas the source in DTA was
printed in 1806. As BaseX allows the creation of collections with
XML documents of different formats and different DTDs or XML
Schemas, or no schemas at all, it is an optimal solution to store and
query our heterogeneous corpus.

The smallest structural units are paragraphs (for prose) and lines
(for poems or dramas). Within a paragraph or line, there might

be rendering information (to preserve special formatting of the
resource) and page breaks or line breaks. The text we hope to find
phrasemes in is the content of these paragraph elements (<p>) and
line elements (<l>).

A further challenge is the total amount of data to be processed.
For phraseological research, the available data might be always too
limited while, at the same time, it will be too large to be efficiently
handled with common databases. Exploring texts for evidence of
phrasemes means constructing the best query in a recursive process
by querying the corpus, inspecting results, and refining the query.
The phraseologists might also wish to save intermediate results as
reference point for constructing optimized queries or to compile
a result collection when no single best query is possible. Both
scenarios require fast execution of the query and fast display of the
result.

A pilot study revealed that for some phrasemes there is only little
evidence, i.e., less than five relevant hits, but for others there are
more than 800 relevant hits. On average, we have 90 relevant hits
per phraseme and around 200 irrelevant hits. For a particular query
there might be no hit at all or up to several thousand. Given the goal
of investigating 1,000 phrasemes, this not only takes a lot of time
for query formulation, result inspection, and further annotation, but
it also creates a lot of data.

5.2 Applying XQuery expressions to the cor-
pus

In our context, the main focus while searching the XML docu-
ments is not on the structure, but on the contents: The structure is
used only to determine the bibliographic data needed to identify
relevant excerpts and to be able to display context necessary for

201

annotating linguistic aspects like meaning or register. Bibliographic
information can be accessed by traveling up the document tree. The
original page on which the text would be found in the printed version
can be accessed by descending to the next page-break information.
Context is defined as a certain number of preceding or following
text nodes.

Index structures are mandatory if large databases are to be queried.
For our purpose, we create a full-text index, including all stop words.
Usually, stop words are conjunctions, prepositions, negation ele-
ments, pronouns, auxiliary verbs, etc. However, these are essential
for retrieving phrasemes as they probably belong to the core of a
phraseme. It might be better to search for combinations of preposi-
tions and verbs without specifying nouns when looking for variation
of nouns in a phraseme like 2a.

The creation of the full-text index results in a 4 GiB database. The
index is applied if exact or fuzzy matches are performed. A second
full-text index is created, in which all tokens are stemmed, and the
resulting index is used to query inflected word forms. The German
stemming algorithm is based on Caumanns [7].

A particular multi-word unit might be used literally or idiomati-
cally—the latter constitutes a phraseme. However, we are interested
in both occurrences in order to make statements about change: when
did a multi-word unit become a phraseme and was less used literally
or vice versa; was there a shift in meaning? Therefore, scoring or
ranking of hits is not useful for this application; we are interested in
all hits. As multi-word units might occur in various word order and
be discontinuous, we cannot automatically distinguish correct and
false positive hits, the latter defined as occurrence of all elements of
the query but with no syntactic or semantic relation. The distinction
has to be made by the phraseologist, i.e., manually.

With XQuery Full Text, queries can be created that specify
(1) whether the elements of a search string have to occur as contin-
uous string, i.e., as a “phrase”, (2) as discontinuous string, i.e., all
words have to occur or only some of them, (3) preserving or not
the given order, or (4) within a given window. The latter allows for
mimicking searching within sentence boundaries.

Listing 3 shows XQuery expressions from the query logs, which
are related to find evidence of phraseme 2a. The first query contains
no stemming option, but looks for exact matches of the search
strings only. The other queries include the preposition vom, use
different distances, and enforce the search strings to occur in the
given order. All elements of the search string have to occur within a
single paragraph or a line.

The results of a query, manually selected for annotation, are
stored in a separate database, the collect database. The XQuery
expression created by the phraseologist is stored as well. This serves
documentation purposes, checking and approving procedures—this
applies also to the information on who selected a specific hit—, and
also allows for the creation of related or “better” queries by serving
as inspiration. Listing 4 shows the structure of those entries.

The phraseologist will create various queries to find evidence
for one phraseme as shown in Listing 3. After executing a query,
she selects hits—i.e., paragraphs or lines where the search string
was found in—to be annotated and saves the results. Hits not se-
lected will be stored as well, having the value no for the element
<selected> (also for documentation purposes and to be able to
later automatically determine the “best” query with respect to recall
and precision). The <node> element references the node-ID of the
hit. When executing another query for the same phraseme, the re-
sults might include nodes that are already matched by a previous
query and already stored as evidence for the particular phraseme.
These nodes are no longer selectable, but the current query will be

//*[text() contains text
(’Apfel ’ ftand ’Stamm ’ ftand ’fällt ’)
distance at most 10 words][self ::*:p or self ::*:l]

//*[text() contains text
(’vom ’ ftand ’stamm ’)
using stemming using language "de"
distance at most 10 words ordered]
[self ::*:p or self ::*:l]

//*[text() contains text
(’vom ’ ftand ’stamm ’)

using stemming using language "de"
distance at most 2 words ordered]
[self ::*:p or self ::*:l]

//*[text() contains text
(’vom ’ ftand ’stamm ’)
using stemming using language "de"
distance at most 1 words ordered]
[self ::*:p or self ::*:l]

Listing 3: XQuery expressions intended to find evidence of the
phraseme Der Apfel fällt nicht weit vom Stamm

<entry time = "2012 -03 -29 T17 :43:29" user = "..." >
<node >3438425 </node >
<phraseme >Ad0018 </phraseme >
<query >[text() contains ...]</query >
<secondquery >[text () contains ...]</ secondquery >
<selected >yes </selected >

</entry >

Listing 4: Pseudo entry in the collect database

stored in a <secondquery> element in the entry that represents this
evidence.

We follow the paradigm of multiple layers to annotate the corpus.
One layer contains information about which phraseme was found
in a particular text node. The node-ID of this particular paragraph
or line in the XML documents collection is used as reference point.
The phraseme is also stored as a reference (<phraseme>) pointing
to a list of given phrasemes and their prototypical meaning as found
in dedicated collections or dictionaries. If an evidence is anno-
tated, attributes containing information about linguistic aspects are
created—i.e., register, modality, negation, voice, etc.—and stored in
the annotation database, which contain entries like the ones shown
in Listing 5. A particular paragraph or line may contain more than
one phraseme.

As briefly described above, collecting and annotating evidence re-

<node id = "3438425" >
<phraseme

id = "Ad0018"
mark = "Apfel fällt selten weit vom Stamme"
voice = "active"
negation = "no"
meaning = "idiomatic"
register = "..."
time = "2012 -04 -19 T16 :04:33"
user = "..."

/>
<phraseme

id = "Ad0048"
mark ...

/>
</node >

Listing 5: Pseudo entry in the annotation database

202

sults in the creation of several sub-databases for intermediate results,
to be later integrated into or merged with the original database. With
XQuery Update, the original node can be replaced by the annotated
one, in order to show evidence of phrasemes and their linguistic
features within the original text.

5.3 Web interfaces for collecting and annotat-
ing evidence

The BaseX GUI is used for cleanup of annotation data whenever
the phraseologists decide to no longer annotate specific features or
to have additional annotation with default values. The GUI is also
used on a local machine for developing efficient XQuery expressions
to be used in the Web interface.

Figure 5: User interface for annotating phrasemes

For actual retrieval and annotation, the BaseX client/server archi-
tecture is used to allow remote and concurrent access for multiple
users. The user interface for the phraseologists reflects the two-step
process, consisting of collecting and annotating evidence: one in-
terface allows retrieving evidence and storing relevant nodes, the
other interface, as shown in Figure 5, supports annotation and is
preferably used after collecting evidence for a particular phraseme
is finished. The interfaces are implemented with Ext JS 410, and the
communication with the BaseX server is based on the Perl API. Perl
allows efficient and comfortable manipulation of the XQuery results
in order to be displayed in a form convenient for phraseologists. The
users of the web front-end do not have to write XQuery expressions,
but they are provided with a simplified query language, in which
most of the elements are added by choosing from fixed options. The
input is then transformed into the final XQuery expression.

6. CONCLUSION
In this paper, we have given an insight into the current state of the

art of XQuery, as implemented in the native XML database BaseX.
In contrast to Eckart [12, p. 187], who concluded that XML tech-

nologies are not appropriate to handle linguistic data, we could show
that the capabilities of XQuery Full Text and Update now enable
linguistically motivated exploration of heterogeneous documents.
As a case in point, we presented the development of a framework
for retrieval and annotation of phrasemes in diachronic texts.

This approach is transferable to other linguistic research ques-
tions investigating semi-structured data. An XML database like
BaseX is more suitable than a relational database. XQuery 3.0 and

10http://www.sencha.com/products/extjs

its Full Text and Update extensions are the basis for managing, re-
trieving, and annotating data consistently and efficiently in a single
framework.

The search and annotation interface is put into productive use.
The phraseologists in the OLdPhras project will create an evidence
resource to serve as one source for the edition of dictionary entries.
With our implementation, we proved that project or data specific
development of XML dialects for storing, retrieving, and annotating
as usual today [35] is not necessary. The capabilities of XQuery
are, in our experience, powerful enough to effectively meet the
requirements of corpus linguistics.

7. ACKNOWLEDGEMENTS
Alexander Holupirek is supported by the DFG Research Training

Group GK-1042 Explorative Analysis and Visualization of Large
Information Spaces. Research on phrasemes is funded by the SNSF
under grant number 129577.

References
[1] S. Amer-Yahia et al. XQuery and XPath Full Text 1.0. W3C

Candidate Recommendation.
http://www.w3.org/TR/xpath-full-text-10, May
2008.

[2] S. Baumann, C. Brinckmann, S. Hansen-Schirra, G.-J. Kruijff,
I. Kruijff-Korbayová, S. Neumann, and E. Teich.
Multi-dimensional annotation of linguistic corpora for
investigating information structure. In A. Meyers, editor,
HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation,
Stroudsburg, PA, USA, May 2004. Association for
Computational Linguistics.

[3] P. Bennett, M. Durrell, S. Scheible, and R. J. Whitt.
Annotating a historical corpus of German: A case study. In
Proceedings of the LREC 2010 Workshop on Language
Resource and Language Technology: Standards - state of the
art, emerging needs, and future developments, pages 64–68,
Paris, 2010. ELRA.

[4] A. Berglund et al. XQuery 1.0 and XPath 2.0 Data Model.
http://www.w3.org/TR/xpath-datamodel/, December
2010.

[5] S. Boag et al. XQuery 1.0: An XML Query Language. W3C
Recommendation. http://www.w3.org/TR/xquery,
January 2007.

[6] P. Case. XQuery and XPath Full Text 3.0 Requirements and
Use Cases. http://www.w3.org/TR/
xpath-full-text-30-requirements-use-cases/,
March 2012.

[7] J. Caumanns. A fast and simple stemming algorithm for
german words. Technical report, Freie Universität Berlin,
Fachbereich Mathematik und Informatik, 1999.

[8] D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Robie,
and J. Siméon. XQuery Update Facility.
http://www.w3.org/TR/xquery-update-10/, March
2011.

[9] J.-P. Colson. The World Wide Web as a corpus for set phrases.
In H. Burger, D. Dobrovol’skij, P. Kühn, and N. R. Norrick,
editors, Phraseology, Handbooks of Linguistics and
Communication Science, pages 1071–1077. Walter de
Gruyter, Berlin/New York, 2007.

203

http://www.sencha.com/products/extjs
http://www.w3.org/TR/xpath-full-text-10
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xpath-full-text-30-requirements-use-cases/
http://www.w3.org/TR/xpath-full-text-30-requirements-use-cases/
http://www.w3.org/TR/xquery-update-10/

[10] A. P. Cowie. Phraseology and corpora: some implications for
dictionary-making. Lexicography, 12(4):307–323, 1999.

[11] S. Dipper. POS-tagging of historical language data: First
experiments. In M. Pinkal, I. Rehbein, S. Schulte im Walde,
and A. Storrer, editors, Semantic Approaches in Natural
Language Processing: Proceedings of the Conference on
Natural Language Processing 2010 (KONVENS), pages
117–121, Saarbrücken, Germany, 2010. Universaar.

[12] R. Eckart. Towards a modular data model for multi-layer
annotated corpora. In Proceedings of the COLING/ACL on
Main conference poster sessions, COLING-ACL ’06, pages
183–190, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics.

[13] R. Eckart. Choosing an XML database for linguistically
annotated corpora. Sprache und Datenverarbeitung, 32(1),
2008.

[14] R. Eckart and E. Teich. An XML-based data model for
flexible representation and query of linguistically interpreted
corpora. In Data Structures for Linguistic Resources and
Applications - Proceedings of the Biannual Conference of the
Society for Computational Linguistics and Language
Technology (GLDV), pages 327–336, 2007.

[15] P. Fischer et al. MXQuery – a low-footprint, extensible
XQuery Engine. http://www.mxquery.org, 2009.

[16] X. Franc. Qizx/db. http://www.xmlmind.com/qizx/,
2012.

[17] C. Grün. Storing and Querying Large XML Instances. PhD
thesis, Universität Konstanz, Konstanz, 2011.

[18] C. Grün, J. Gerken, H.-C. Jetter, W. A. König, and H. Reiterer.
MedioVis – A User-Centred Library Metadata Browser. In
A. Rauber, S. Christodoulakis, and A. M. Tjoa, editors, ECDL,
volume 3652 of Lecture Notes in Computer Science, pages
174–185. Springer, 2005.

[19] C. Grün, A. Holupirek, M. Kramis, M. H. Scholl, and
M. Waldvogel. Pushing XPath Accelerator to its Limits. In
ExpDB, 2006.

[20] C. Grün, A. Holupirek, and M. H. Scholl. Visually exploring
and querying XML with BaseX. In A. Kemper, H. Schöning,
T. Rose, M. Jarke, T. Seidl, C. Quix, and C. Brochhaus,
editors, BTW, volume 103 of LNI, pages 629–632. GI, 2007.

[21] C. Grün, S. Gath, A. Holupirek, and M. H. Scholl. XQuery
full text implementation in BaseX. In Proceedings of the 6th
International XML Database Symposium on Database and
XML Technologies, pages 114–128, Berlin, Heidelberg, 2009.
Springer.

[22] B. Juska-Bacher and C. Mahlow. Phraseological change – a
book with seven seals? Tracing diachronic development of
German proverbs and idioms. In P. Bennett, M. Durell,
S. Scheible, and R. J. Whitt, editors, New Methods in
Historical Corpus Linguistics, volume 3 of Corpus linguistics
and Interdisciplinary perspectives on language. Gunter Narr,
Tübingen, Germany, 2012.

[23] M. Kaufmann and D. Kossmann. Developing an Enterprise
Web Application in XQuery. In ICWE, pages 465–468, 2009.

[24] C. Mahlow and B. Juska-Bacher. Exploring New High
German texts for evidence of phrasemes. Journal for
Language Technology and Computational Linguistics, 26(2):
117–128, 2011.

[25] M. Poesio, E. Barbu, E. Stemle, and C. Girardi.
Structure-Preserving Pipelines for Digital Libraries. In
Proceedings of the 5th ACL-HLT Workshop on Language
Technology for Cultural Heritage, Social Sciences, and
Humanities (LaTeCH 2011), pages 54–62, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

[26] Rechtsquellenstiftung des Schweizerischen Juristenverbandes,
editor. Appenzeller Landbücher, volume SSRQ AR/AI 1 of
Sammlung Schweizerischer Rechtsquellen. Schwabe, Basel,
Switzerland, 2009.

[27] G. Rehm, R. Eckart, C. Chiarcos, and J. Dellert.
Ontology-based XQuery’ing of XML-encoded language
resources on multiple annotation layers. In N. Calzolari,
K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis,
and D. Tapias, editors, Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Paris, May 2008. ELRA.

[28] L. Romary. Stabilising knowledge through standards: A
perspective for the humanities. In K. Grandin, editor, Going
Digital. Evolutionary and Revolutionary Aspects of
Digitization, volume 147 of Nobel Symposium, pages 188–218.
Science History Publications, New York, NY, USA, 2011.

[29] A. Salminen and F. W. Tompa. Requirements for XML
document database systems. In Proceedings of the 2001 ACM
Symposium on Document engineering, DocEng ’01, pages
85–94, New York, NY, USA, 2001. ACM.

[30] S. Scheible, R. J. Whitt, M. Durrell, and P. Bennett.
Evaluating an ‘off-the-shelf’ POS-tagger on Early Modern
German text. In Proceedings of the 5th ACL-HLT Workshop
on Language Technology for Cultural Heritage, Social
Sciences, and Humanities (LaTeCH 2011), pages 19–23,
Stroudsburg, PA, USA, 2011. Association for Computational
Linguistics.

[31] S. H. Schirra, S. Neumann, and M. Vela. Multi-dimensional
annotation and alignment in an English-German translation
corpus. In Proceedings of the 5th Workshop on NLP and XML:
Multi-Dimensional Markup in Natural Language Processing,
NLPXML ’06, pages 35–42, Stroudsburg, PA, USA, 2006.
Association for Computational Linguistics.

[32] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, and
J. Tsujii. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations at the 13th
Conference of the European Chapter of the Association for
Computational Linguistics, Stroudsburg, PA, USA, Apr. 2012.
Association for Computational Linguistics.

[33] E. Ukkonen. Algorithms for Approximate String Matching.
Information and Control, 64(1-3):100–118, 1985.

[34] C. Wittern, A. Ciula, and C. Tuohy. The making of TEI P5.
Literary and Linguistic Computing, 24(3):281–296, May
2009.

[35] A. Zeldes, J. Ritz, A. Lüdeling, and C. Chiarcos. ANNIS: A
search tool for multi-layer annotated corpora. In Proceedings
of Corpus Linguistics 2009, Liverpool, July 20-23, 2009.

204

http://www.mxquery.org
http://www.xmlmind.com/qizx/

	Introduction
	A framework for retrieval and annotation of diachronic corpora
	State of the art and related work
	An integrated system for retrieval and annotation of large XML-annotated corpora

	Architecture of BaseX
	Working with BaseX
	Standalone mode
	Server mode

	Building applications

	XQuery and its Full Text and Update Extensions
	Use case: Retrieving and annotating idiomatic phrases
	Challenges
	Linguistic challenges
	Technical challenges

	Applying XQuery expressions to the corpus
	Web interfaces for collecting and annotating evidence

	Conclusion
	Acknowledgements

